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Introduction 

SWIFT is a multiblock computational fluid dynamics (CFD) code for analysis of three-dimensional viscous 
flows in turbomachinery. It solves the thin-layer Navier-Stokes equations using explicit finite-difference 
techniques. It can be used to analyze linear cascades or annular blade rows with or without rotation. Three 
differencing schemes are available – a central difference scheme with artificial viscosity [1, 2], and the AUSM+ 
[3, 4] and H-CUSCP [4, 5, 6] upwind schemes. Three turbulence models are available – the Baldwin-Lomax [7, 
8] and Cebeci-Smith [8, 9] algebraic models, and Wilcox’s 2006 k-  model with a stress limiter [10, 11]. 

The code uses an explicit multistage Runge-Kutta solution scheme to march the solution in time from an 
initial guess to a steady-state solution [12]. A spatially varying time step and implicit residual smoothing are used 
to accelerate convergence. Preconditioning can be used to accelerate convergence for low speed flows [13, 14]. 

Limited multi-block capability can be used to model complicated geometries. C-type grids are used to give 
good resolution of blade leading edges and wakes. H-grids can used to extend the domain upstream, and O-grids 
can be used to resolve hub and tip clearance regions. A mixing plane technique that uses characteristic boundary 
conditions can be used for multistage machines [15]. H-grids can also be used to analyze isolated blade rows or 
internal duct flows. 

Grid input is in standard PLOT3D xyz-file format. Grids are usually generated using TCGRID [16], a 
turbomachinery grid code developed by the author. TCGRID is distributed by the NASA Glenn Research Center 
Software Repository http://sr.grc.nasa.gov. 

SWIFT is written completely in Fortran and runs quickly on a Linux workstation. SWIFT will run on a PC or 
Mac, but the user will have to make the appropriate conversions. Parallel processing using OpenMP directives 
gives excellent performance on multi-core shared memory computers. Solution files are compatible with most 
CFD flow visualization packages. 

Six test cases are included with SWIFT and TCGRID:  
• Goldman’s annular turbine vane [1, 4, 17] 
• The space shuttle main engine (SSME) two-stage fuel turbine [15, 18, 19] 
• The NASA large, low-speed centrifugal impeller [14, 20] 
• Core compressor rotor 37 [21, 22, 23, 24] 
• Core compressor stage 35 [21, 22, 25] 
• Transonic fan rotor 67 [2, 25] 
Grids for the turbomachinery test cases must be generated with the TCGRID code that is distributed 

separately. Comparisons with experimental data are included in separate Excel files. 
This report serves as the user’s manual and documentation for SWIFT. The code and some aspects of the 

numerical method are described. Steps for code installation and execution are given for Linux systems. The grid, 
input, and output variables are described in detail. 
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Features of SWIFT 

Applications 
Linear cascades 

Axial compressors and turbines 

Centrifugal impellers and mixed-flow machines (but no splitters) 

Radial diffusers 

Pumps 

Rectangular ducts  

Isolated blade rows or multistage machines 

Hub and tip clearances 

Multi-block Capability  
C-grids around blades 

H-grid upstream 

O-grids in hub- or tip-clearance regions (or periodic clearance model) 

Mixing-planes between blade rows 

Discontinuous grids at mixing planes added in version 400 

H-grids for blades or ducts 

Formulation 
Navier-Stokes equations written in Cartesian coordinates with rotation about the x-axis 

Thin-layer equations in streamwise direction, all cross-channel viscous terms retained 

Central-difference, AUSM+, and H-CUSP differencing schemes for inviscid terms 
Central-difference scheme for viscous terms 

Turbulence Models 
Baldwin-Lomax (algebraic) 

Cebeci-Smith (algebraic) 

Wilcox’s 2006 two-equation k-  model with stress limiter and cross-diffusion terms 

Transition and surface roughness effects in all models 

Numerical Method 
Explicit multi-stage Runge-Kutta scheme  

Variable time-step and implicit residual smoothing for convergence acceleration 

Preconditioning for low-speed (incompressible) flows 

Input 
General grid files in PLOT3D format, usually generated using TCGRID 

Namelist input of flow parameters 

Printed Output 
Residual history 

Spanwise output of circumferentially averaged flow quantities at the grid inlet and exit 

Streamwise output of blade row performance and blade surface properties 

Printed output can be edited manually and plotted with Microsoft Excel or other line plot software 

Computer Requirements 
Fortran 90 compatible compiler  

Runs as a quick batch process on Linux, Mac, or Windows computers 

Parallel processing on multi-core, shared memory computers using OpenMP directives 

Solution times range from one to several hours on multi-core computers 

Dynamic memory allocation reduces memory requirements and avoids recompiling for most problems 
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Graphical Output 
No graphical output is provided with SWIFT, but a separate CFD visualization package is needed to view and 

evaluate the solutions. Grid, solution, and k-  files are written in standard PLOT3D format and can be read 

directly and plotted with the public-domain CFD visualization tool PLOT3D or the commercial tools FieldView, 

TecPlot, or EnSight CFD. Check the following web sites for more information. 

 

PLOT3D : http://www.nas.nasa.gov/Research/Software/swdescription.html 

TecPlot:  http://www.tecplot.com/ 

FieldView: http://www.ilight.com/ 

EnSight CFD: http://www.ensightcfd.com/ 
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Numerical Method 

Multistage Runge-Kutta Scheme 

Jameson, Schmidt, and Turkel developed multistage schemes [12] as a simplification of classical Runge-
Kutta integration schemes for ODE’s. The simplification reduces the required storage, but also reduces the time-
accuracy of the schemes, usually to second order. The following discussion of these schemes should give some 
guidance in choosing parameters for running the code. 

The kth-stage of an n-stage scheme may be written as: 

qk = q0 k t RI
k
+ RV

0( )  

where q is an array of five conservation variables (see Solution Q-File, pp. 28), k is current the stage, q0 is the 
previous time step, k  are the multistage coefficients discussed below, t is the time step, RI

k is the inviscid part 

of the residual, and RV
0  is the viscous part of the residual plus the artificial dissipation, if applicable. Note that 

RI
k is evaluated at every stage k, but RV

0  is only evaluated at the initial stage for computational efficiency. 

 

n 1
 

2
 

3
 

4
 

5
 

*
 

2 1.2 1.    .95 

3 .6 .6 1.   1.5 

4 .25 .3333 .5 1.  2.8 

5 .25 .1667 .375 .5 1. 3.6 

Table 1. Runge-Kutta parameters and maximum Courant number for n-stage schemes. 

The maximum stable Courant number *  for an n-stage scheme can be shown to be * n 1 . The actual 

stability limit depends on the choice of k . For consistency n  must equal 1. For second-order time accuracy 
n 1  must equal 1/2. The values of k  used in the code and the theoretical maximum Courant number * are set 

by a data statement in SWIFT subroutine setup and are given in table 1. 
The number of stages is set with the variable nstg. Nstg = 4 is recommended, although Jameson et al. tend to 

favor 5 stages. The 2-stage scheme (nstg = 2) is very robust and often works when everything else fails. 
A spatially-varying t  is used to accelerate the convergence of the code. Setting ivdt = 1 sets the Courant 

number to a constant (input variable cfl) everywhere on the grid, and recalculates it every icrnt iterations. This 
option is strongly recommended. Set icrnt to a moderate number, e.g. 10, so that the time step is recalculated 
occasionally. The time step is recalculated when the code is restarted, which can cause jumps in the residual if 
icrnt is too big. 

Implicit residual smoothing (described later) can be used to increase the maximum Courant number by a 
factor of two to three, thereby increasing the convergence rate as well. 

Artificial Viscosity 

The central-difference scheme is selected by setting icdup = 1 (the default.) It is the fastest of the three 
differencing schemes used in SWIFT, it gives moderately smeared shocks, and it may show velocity overshoots 
at the edge of boundary layers. It is recommended when quick answers are desired. 

Second-order central differences require an artificial viscosity term to prevent odd-even decoupling. A 
fourth-difference artificial viscosity term is used for this purpose. This term is third-order accurate in space and 
thus does not affect the formal second-order accuracy of the scheme. The input variable avisc4 scales the fourth-
difference artificial viscosity, and should be set between 0.25 and 2.0 A good starting value is 1.0. If the solution 
is wiggly, increase avisc4 by 0.25. If it is smooth, try reducing avisc4 by 0.25. Larger values of avisc4 may 
improve convergence somewhat, but the magnitude of avisc4 has little effect on predicted losses or efficiency. 

The code also uses a second-difference artificial viscosity term for shock capturing. The term is multiplied by 
a second difference of the pressure that is designed to detect shocks. Note that the second-difference artificial 
viscosity is first order in space, so that the solution reduces to first-order accurate near shocks. Two other 
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switches developed by Jameson, et al. [12] are used to reduce overshoots around shocks. The input variable 
avisc2 scales the second difference artificial viscosity. Avisc2 can be set to 0.0 for purely subsonic flows, and is 
usually set to 1.0 for flows with shocks. If shocks are wiggly, increase avisc2 by 0.5. If they are smeared out, try 
decreasing avisc2 by 0.5. Shocks will be smeared over a few cells regardless of the value of avisc2. The 
magnitude of avisc2 has little effect on predicted loss or efficiency. 

Eigenvalue scaling described in [2] is used to scale the artificial viscosity terms in each grid direction. This 
greatly improves the robustness of the code. The artificial viscosity is also reduced linearly by the grid index near 
walls to reduce its effect on the physical viscous terms. Input variables jedge, kedgh, and kedgt  are the indices 
where the linear reduction begins.  

For computational efficiency the artificial viscosity is usually calculated only at the first stage of the Runge-
Kutta scheme. This works well for most problems, but for difficult problems the robustness of the scheme can be 
improved by updating the artificial viscosity more often. This is selected by setting ndis = 2. For nstg = 2 or 3 
this has no effect. For nstg = 4 the artificial viscosity is calculated at stages 1 and 2. For nstg = 5 the artificial 
viscosity is calculated at stages 1, 3, and 5. The physical viscous terms are calculated at the same time as the 
artificial viscosity. Thus, setting ndis = 2 increases the CPU time per stage significantly, but it is so reliable that 
it is usually the preferred scheme. 

AUSM
+
 Upwind Scheme 

The Advection Upstream Splitting Method (AUSM+) upwind scheme is selected by setting icdup = 1. It is the 
least dissipative but slowest of the three differencing schemes used in SWIFT. It is recommended for most 
problems. 

The AUSM+ family of upwind schemes was developed by Meng-Sing Liou and others [3, 4]. The AUSM+ 
scheme defines a cell interface Mach number based on characteristic speeds from neighboring cells. The 
interface Mach number is used to determine the upwind extrapolation for the convective part of the inviscid 
fluxes. A separate splitting is used for the pressure terms. The van Albada limiter is used to estimate interface 
fluxes with second-order accuracy. 

The speed of sound at the cell interface is multiplied by a function that effectively scales the numerical 
dissipation with the local flow speed, giving appropriate amounts of dissipation for all flow speeds. The scaling 
function is based on an average interface Mach number that must be limited by a cutoff relative Mach number 
Mref . Reference Mach numbers for rotors and stators are set using input variables refmr and refms, which should 

be the largest relative Mach number expected in those blade rows, but limited to a maximum of 1.0. The 
reference values are then reduced by the factor ausmk = 0.2 – 1.0. 

H-CUSP Upwind Scheme 

The Convective Upwind Split Pressure (CUSP) upwind scheme is selected by setting icdup = 2. It gives the 
sharpest shocks but is the most dissipative of three differencing schemes used in SWIFT. It is second in 
execution speed. It is only recommended for occasional problems where the AUSM+ scheme will not converge. 

CUSP schemes were described by Tatsumi, Martinelli, and Jameson in [5, 6]. The H-CUSP scheme uses the 
stagnation enthalpy h as the conservation variable in the energy equation. The scheme was developed as a flux-
split scheme similar to AUSM+, but it is implemented as a limited dissipative flux added to a central-difference 
scheme. Jameson’s SLIP limiter is used to produce a second-order non-oscillatory scheme. For computational 
efficiency the dissipative fluxes are updated less often than the central-difference fluxes. The implementation in 
SWIFT is described in [4]. 

Like the AUSM+ scheme, the H-CUSP scheme requires a cutoff Mach number Mref . Reference Mach 

numbers for rotors and stators are set using input variables refmr and refms, which should be the largest relative 
Mach number expected in those blade rows, but limited to a maximum of 1.0. The reference values are then 
reduced by the factor hcuspk = 0.05 – 0.20. 

Implicit Residual Smoothing 

Implicit residual smoothing is selected by setting irs = 1. It was introduced by Lerat in France and 
popularized by Jameson in the U.S. as a means of increasing the stability limit and convergence rate of explicit 
schemes. The idea is to run the multistage scheme at a high, unstable Courant number, but maintain stability by 
smoothing the residual occasionally using an implicit filter. The scheme can be written as follows: 
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1( ) 1( ) 1( )R = R  

Here , , and 
 
are constant smoothing coefficients in the body-fitted coordinate directions , , and , 

shown in Fig. 1,  is a second-difference operator, R  is the smoothed residual, and R is the unsmoothed 

residual. 

It can be shown that implicit residual smoothing does not change the solution if the scheme converges. Linear 
stability theory shows that the scheme can be made unconditionally stable if the i are big enough, but also 

shows that the effects of artificial viscosity are diminished as the Courant number is increased. In practice the 
best strategy is to double or triple the Courant number of the unsmoothed scheme. If the residual is smoothed 
after every stage, the theoretical 1-D values of i  needed for stability are given by: 

i

1

4 *

2

1  

where *  is the Courant limit of the unsmoothed scheme (given in Table 1), and  is the larger operating 
Courant number. For example, to run a four-stage scheme at a Courant number = 5.6 , the smoothing 
coefficient should be: 

i

1

4

5.6

2.8

2

1 = 0.75  

A single variable eps =  is input to SWIFT. The 1-D limit for  given above usually works well, but can be 
increased up to 2.5  if the solution blows up, and can be decreased slightly to improve convergence if the 
solution is stable. Values of  are scaled within the code at each grid point by multiplying eps by the same 
Eigenvalue scaling coefficients used for the artificial dissipation. This has proven to be quite robust. epi, epj, and 
epk can be used to scale eps in the i-, j-, and k-directions, but they are usually left at their default values of 1.0. 

Implicit residual smoothing involves a scalar tridiagonal inversion for each variable along each grid line in 
each direction. It adds about 20 percent to the CPU time when applied after each stage. Smoothing can be done 
after every other stage to reduce CPU time (about 7 percent) by setting irs = 2, but eps must be increased 
(approximately doubled.) This option is rarely used. 

Preconditioning 

Density-based schemes like SWIFT solve the continuity equation by driving the density residual to zero. For 
low speed (nearly incompressible) flows the density residual is physically near zero, and so the schemes fail to 
converge. Preconditioning, described by Turkel in [13], improves the convergence rate in two ways. First, it 
replaces the q-variables q = [ , u, v, w, e]with variables that are better behaved at low speeds, 

W = [p, u, v, w, h] , where p is the pressure and h is the total enthalpy. Second it multiplies the equations by a 

matrix designed to equalize the wave speeds of each equation. Preconditioning works extremely well for the 
Euler equations and less well for the Navier-Stokes equations. It allows solutions to be run at very low flow 
speeds that simply would not converge otherwise. 

It can be difficult to get a solution started with preconditioning. It is usually best to run 200-500 iterations 
with preconditioning turned off, then run to convergence with preconditioning turned on. 

The preconditioning operator is designed so that it has no effect on the steady-state solution; however, for the 
central-difference scheme preconditioning also modifies the artificial dissipation operator. This tends to reduce 
the artificial dissipation when preconditioning is used. 

The preconditioning matrix has the local relative Mach number in the denominator and must be by a cutoff 
Mach number Mref . Reference Mach numbers for rotors and stators are set using input variables refmr and 

refms, which should be the largest relative Mach number expected in those blade rows, but limited to a maximum 
of 1.0. The reference values are then reduced by the factor pck = 0.1 – 0.3. The solution will diverge quickly if 
these parameters are too small, and may converge slowly if they are too big. 

At low Mach numbers the default inlet boundary condition may not work properly. If contour plots of 
pressure or velocity look bad near the inlet, set ibcinu=2 to extrapolate meridional velocity at the inlet. 
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Recommended Numerical Parameters 

 
nstg ndis cfl eps Comments 

2 1 2.5 1.35–1.60 very robust, fast per stage 

4 2 5.6 0.75–1.00 good overall scheme 

5 2 7.0 1.25–1.50 slow per stage, fast convergence 

Table 2 Recommended numerical parameters for three Runge–Kutta schemes. 

Table 2 lists recommended parameters for three numerical schemes, in order of the author’s preference. For 
all schemes use irs = 1. For the central-difference scheme use avisc2 = 1.0 and avisc4 = 0.5. 

Turbulence Models 

The turbulence model is selected using input variable ilt (Inviscid, Laminar, Turbulent,) see &nam5 – 
Viscous Parameters, pp. 20. 

Three turbulence models are available in SWIFT  the Baldwin-Lomax model, the Cebeci-Smith model, and 
Wilcox’s 2006 two-equation k-  model. All three models include transition models and surface roughness 
effects. 

Baldwin-Lomax and Cebeci-Smith Turbulence Models 

The Baldwin-Lomax model is selected by setting input variable ilt = 2. The model is implemented as 
described in the original reference [7], except that two constants have been changed to CCP = 1.216  and 

CKleb = 0.646 . The length scale for the Baldwin-Lomax model is correlated to the maximum of a function 

f = y D , where y is the distance from the wall,  is the magnitude of the vorticity, and D is the Van Driest 

damping function. In some cases that maximum is not well behaved, so SWIFT limits the search to grid lines at 
indices jedge away from the blade, kedgh from the hub, and kedgt from the tip. Indices jedge, kedgh, and kedgt 
should be chosen slightly larger than the largest extent of the boundary layer. Solutions are usually insensitive to 
values of these parameters if they are big enough, but may under predict viscous effects if they are too small. 

The Cebeci-Smith model is selected by setting input variable ilt = 3. The model is implemented like the 
Baldwin- Lomax model except that the length scale is found by integrating  

f dy = *

0
ue  

as described in [8]. Here the upper bound of the integral is usually found automatically since f 0 as y . 

However, cases with free-stream vorticity can have a non-zero f outside the boundary layer, so again input 

variables jedge, kedgh, and kedgt are used to bound the integrals in SWIFT. The Cebeci-Smith model is very 

reliable for turbine heat transfer problems, but is not recommended for transonic compressors that may produce 

free-stream vorticity behind the bow shock. 

 Transition is predicted in both models at the location where μturb μlam > cmutm , where cmutm is an input 

variable usually set to 14, as recommended in [7]. The model is crude but often works surprisingly well for 
moderate Reynolds numbers and low free-stream turbulence. 

Roughness effects are included in both models using the Cebeci-Chang roughness model [9]. The model 
modifies the turbulent length scale based on the equivalent sand-grain roughness height in turbulent wall units 
h+ . The roughness height is input using variable hrough, and h+ is calculated internally. If hrough = 0.0 a model 
for a hydraulically smooth surface is used. 

Wilcox k-  Turbulence Model 

The k-    model  is selected by setting input variable ilt = 4 or 5. The model is described in [10], and 
implemented as described in [11] using a first-order upwind ADI scheme. Two versions of the model are 
included, a baseline model (ilt = 4) and a low Reynolds number model (ilt = 5). The baseline model gives a fully 
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turbulent solution that is valid all the way to the wall, unlike k-  models. The low Reynolds number model 
includes transition effects. 

Wilcox’s 2006  model includes a cross-diffusion term that reduces dependence on freestream values of , and 
a shear stress limiter that  reduces the turbulent viscosity when production of turbulent kinetic energy exceeds 
destruction. The shear stress limiter has been shown to improve results for shock-separated flows. The stress 
limiter is selected by setting isst = 1. 

Three input parameters affect the k-  model, the surface roughness hrough as described above, the free-
stream turbulence level tintens (typically 0.0 to 0.05), and the free-stream turbulent viscosity 
tmuinf = μturb μ0r( )

in
, typically 0.1. Solutions are generally insensitive to tmuinf, except for the location of 

transition. 
Previous versions of SWIFT used a turbulent length scale tlength instead of tmuinf. Tlength was awkward to 

use but has been retained in the code for backward compatibility. 
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Nondimensionalization 

 

Ref. State English Units SI Units 
P0r  2116.8 lbf/ft

2 1.0135 x 105 Pa 

T0r  519 R 288.3 K 

c0r  1116.7 ft/sec 340.39 m/sec 

0r  .0765 lbm/ft3 1.2246 kg/m3 

 85.427 lbm/sec/ft2 416.8416 kg/sec/m2 

μ0r  1.197 x 10-5 lbm/(ft sec) 1.71 x 10-5 kg/(m sec) 

 7.137 x 106 [1/ft] 

5.947 x 105 [1/in] 

2.437 x 107 [1/m] 

2.182 x 105 [1/cm] 

Table 3. Standard reference quantities usually used for nondimensionalization. 

The grid xyz-file may be input in arbitrary units of length. The input parameters to SWIFT and the variables 
in the output q-file are all nondimensional except for lengths, which have the same units as the grid. 

All quantities are nondimensionalized by an arbitrary reference stagnation state defined by stagnation density 

0r , sonic velocity c0r = RT0r , and laminar viscosity μ0r . Standard atmospheric conditions, given in Table 3 

above, are often used for the reference state for a compressor in a test cell. However, any self-consistent state 
may be used as long as the units of length are consistent with the grid units. For example, for a fan in an engine 
at flight conditions it is useful use freestream total conditions for the reference state. 

 Input pressures and temperatures are nondimensionalized by P0r  and T0r , respectively. Within the code 

pressures are usually nondimensionalized by 0rc
2
0r = P0r . Inlet pressures and temperatures are 

nondimensionalized similarly, so that P0in = T0in = 1.0  when the inlet is at standard conditions. However, P0r and 

T0r  can also be set arbitrarily using the initial condition input (see Initial Condition Input, pp 24) or a qin file 

(see Inlet and Exit Profiles, pp. 29). Input velocities are sometimes nondimensionalized by c0r , but are usually 

input as a Mach number. 
The reference state defines a reference Reynolds number renr that must be input to SWIFT (see &nam5 – 

Viscous Parameters, pp. 20). renr = 0rc0r / μ0r  has units of [1/grid units]. renr is the same for all cases with the 

same reference state and grid units. 
Output quantities should be self explanatory, except for the mass flow. The mass flow may be output with the 

residual history (see variable mioe under &nam6 – Output Control, pp. 22). Mass flow is also output in the tables 
labeled “theta-averaged quantities,” at the bottom of the column labeled “% mdot.” In either case, the mass flow 
is nondimensionalized by  and has units of [grid units]2. The mass flow through the full annulus is given 

(rather than mass flow per passage,) so that the printed mass flow should be constant through a multistage 
machine. 

0rc0r

renr

0rc0r
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Calculations for liquids 

Nondimensionalization  
Nondimensionalize using conditions for liquids, but calculate c0r as if for air. 

R = 1716.58 ft2/(sec2 R)  ideal gas constant 

 = 1.4   Cp / Cv 

T0r = 60 F = 519 R 

c0r = 1116.7 ft / sec 

0r = 62.37 lbm / ft3 

P0r = 0r R T0r = 1,725,644 lbf / ft
2 

0r = 1.217e-5 ft2 / sec  kinematic viscosity for water at 60 F 

vispwr = 1   laminar viscosity ~ T 

renr  = c0r / 0r = 7.646e6 / in   (convert to appropriate grid units) 

om = omega [rad / sec] / c0r   (convert to appropriate grid units) 

Initial Conditions 
Calculate the inlet and exit velocities V1 and V2 from the flow rate Q and areas A using 
 V = Q / A . 

Approximate the Mach numbers for the initial conditions using  
 M V / c0r . 

Calculate the total pressure rise dp0 from the head rise H using  
 P0 = gH . 
Calculate the pressure ratios for the initial conditions using  
 P02 / P01 = (P01 + P0 ) / P01 . 

Calculate the temperature ratios for the initial conditions using  
 T02 /T01 = P02 / P01 . 

Calculate the static pressure rise  using 
 P = P0 0.5 (V 2

2 V 2
1 )  

Calculate prat using 
 prat = P2 / P01 = (P1 + P) / P01 . 

This should give a solution close to the correct flow rate, but you will probably have to run several cases with 
diffeent values of prat to get the flow rate exactly. 

Preconditioning 
Run SWIFT 200 – 500 iterations with no preconditioning, using: 
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=0. 
 
Then restart with preconditioning turned on (see Preconditioning, pp. 6), with: 
icdup=0, nstg=2, avisc2=1, avisc4=1, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30. 
 
The AUSM+ scheme works well at low speeds. Try: 
icdup=1, nstg=2, cfl=2.5, eps=1.5, ibcinu=1, ipc=1, refmr=.15, pck=.30, ausmk=0.3. 
 

P
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 Grids 

SWIFT can handle single-block grids and a limited variety of multi-block grids. Grids are usually generated 
using TCGRID [16]. Dummy grid lines are used to handle periodic boundary conditions and transfer of 
information between blocks, and must be included in the grid file. All grid types currently supported by SWIFT 
will have a dummy grid line at j=jm, except for grids in rectangular ducts which have no dummy grid line. Grids 
are stored in standard PLOT3D format (see Grid XYZ-File, pp. 28).  

The connectivity between the grids is specified using an index file (see Index File, pp. 25). In TCGRID, 
setting iswift=1 in namelist 5 will automatically add dummy grid lines and produce a preliminary index file. 

C-grids (Blades) 
The basic SWIFT grid consists of a C-type grid around a blade, as shown in Figure 1. The i-direction goes 

from i=1 at the lower exit to i=im at the upper exit. The j-direction goes from j=1 at the blade to j=jm-1 at the 
periodic boundary (j=jm at the dummy grid line.) The k-direction goes from 1 at the hub to k=km at the tip. 
Calculations run with a single grid avoid some data I/O and thus run about 10 percent faster than a multiblock 
grid with the same number of points. 

H-grids (Upstream, Blades, Rectangular Ducts) 
Three types of H-grids are supported in SWIFT v.300. The type of H-grid is flagged by index file variable i1 

(see Index File, pp.  25). 
1. An H-grid can be added to extend a C-grid upstream, as shown in Figure 2. A dummy grid line is needed at 

j=jm to apply the periodic boundary conditions. Flagged by setting i1 = 0. 

2. An H-grid can also be used inside a rectangular duct (not shown.) No dummy grid lines are needed. 

Multiblock grids are not supported with this grid type. Flagged by setting i1 = 1. 

3. A single H-grid can be used inside a blade passage, as shown in Figure 3. A dummy grid line is needed at 

j=jm to apply the periodic boundary conditions. Multiblock grids are not supported with this grid type. 

Flagged by setting i1 = leading edge index > 1. 

In each case the i-index goes from inlet to exit, the j-direction goes from blade to blade, and the k-direction goes 
from hub to tip. 

O-grids (Hub and Tip Clearance Gaps) 
O-type grids can be used to resolve the hub or tip clearance regions of blade (visible in Figure 5). Clearance 

regions can also be modeled using a simple periodic boundary condition that does not require gridding the 
region. For O-grids the i-direction starts at the trailing edge cut and wraps around the O. The j-direction starts at 
the center line cut and goes to the perimeter of the O. j=jm is a dummy grid line that overlaps the connecting C-
grid by one point. The k-direction goes from the hub to the blade for hub clearances, or from the blade to the 
casing for tip clearances. 

Multistage Grids 
Multistage C-grids are generated one blade row at a time using TCGRID. The individual grids must meet 

certain requirements: 
1. Use identical hub and tip coordinates for all blade rows. 

2. The blades must be in the correct location and orientation. Use ztrans to move the blades axially, and tflip 

to flip the -coordinates if necessary.  

3. The grids must match at an interface between the blades. Set the exit boundary coordinates of grid 1 to the 

inlet boundary coordinates of grid 2. Place the interface midway between the blades, or close enough to 

blade 2 to get a good C-grid. 

4. For SWIFT, the grids must overlap exactly one cell at the interface. On grid 1 set dswex to give a fine 

spacing near the exit, and set dslap = dswex. This resets the grid spacing at the exit from approximately 

dswex to exactly dslap. On grid 2 set dsmax2 = dslap1. This will cause the dummy grid line from grid 2 to 

overlap grid 1 by dsmax. 

5. The relative circumferential spacing between the grids does not matter. 
SWIFT version 400 allows non-point-matched grids at mixing planes. Neighboring grids can have different 

numbers of points and discontinuous spacings in the spanwise direction. However, using continuous grids across 
mixing planes may improve solution continuity, and will simplify printed and graphical output at a given 
spanwise location.  
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Grids and index files from neighboring blade rows are merged into a multi-block PLOT3D file using a 
Fortran program called multix.f. The merged index file will have the correct block sizes and key indices, but 
must be edited manually to set block connectivity, and options for mixing planes, clearances, and endwall 
rotation.  Additional details about generating multistage grids are given in the TCGRID user’s manual [16]. 
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Unzipping, Compiling, and Running SWIFT 

SWIFT is supplied as a zipped file. It will unzip into a directory with the same name as the file. This 
documentation should be in the main directory. There are subdirectories for source code and test cases. On a 
Linux system: 

unzip swift_400.zip 

Compiling SWIFT 

Go to the src directory and edit the Makefile. Compiler commands are set for the Intel Linux compiler, 
FC = ifort –O3 –ipo –xP –parallel -openmp 

Change the commands as necessary for your compiler. Here 
-O3  gives full optimization 
-ipo  enables interprocedural optimization 
-xP  optimizes for Intel Core architectures 
-parallel generates parallel code  
-openmp  tells the compiler to use the OpenMP directives in SWIFT 
 
Near the bottom of the Makefile there may be a line that moves the executable to a bin directory. Keep or 

remove this line as desired. 
mv swift ~/bin 

Save the file and exit. 
Most arrays are allocated dynamically, but a few work arrays have fixed maximum dimensions. Edit 

modules.f90 and modify the maximum dimensions in module maxsize if desired. Default values for most input 
variables are also set here. 

integer, parameter::ni=255, nj=63, nk=63 
Run make. Move the executable swift to a directory in your path.  
Clean up object and executable files if desired by running 

make clean 

File Names 

Unit Default name Description Reference 
fort.1 grid.xyz grid file from TCGRID Grid XYZ-file, pp. 28 

fort.2 q_in.q binary input solution file, read if iresti=1 Solution Q-File, pp. 28 

fort.3 q_out.q binary output solution file, written if iresto=1 Solution Q-File, pp. 28 

fort.10 index.dat text index file, required Index File, pp. 25 

fort.7 kw_in.kw binary input k-  file, read if ilt = 4 or 5 Turbulence Model k-  file, pp. 28 

fort.8 kw_out.kw binary output k-  file, written if ilt = 4 or 5 Turbulence Model k-  file, pp. 28 

fort.13 profile_in.dat text input qin file, read if iqin = 1 Inlet and Exit Profiles, pp. 29  

fort.14 profile_ex.dat text output pex file, read if ipex = 1 Inlet and Exit Profiles, pp. 29 

fort.15 profile_out.dat text output span file, written if ispan = 1  Inlet and Exit Profiles, pp. 29 

Table 4. Files used by SWIFT. 

The namelist input file for SWIFT is read from fort.5 (standard input.) Printed output from SWIFT is written 
to fort.6 (standard output.) Files linked to other Fortran units may be used in the execution of SWIFT, depending 
on input options. The files are described in Table 3 above. 

All input text files are read using unformatted read statements, i.e., read(5,*), so you don’t have to worry 
about getting the data in the right columns. 

If iopen = 0 (default) the files are not explicitly opened in the code. You must link the files to the appropriate 
Fortran unit manually, e.g., 
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ln grid.xyz fort.1 
ln qin.q fort.2 
etc. 
If iopen = 1 all files are opened using the default names in Table 4. This may be most useful under Windows. 

 
Note: It is also possible to input your own file names using the namelist input. Edit subroutine openfile.f, 

uncomment the one line that reads namelist 7, and recompile. 
!     read (5,nl7) 
Add namelist & nl7 to your input file and reset the prefix of any default file names using character strings, 

e.g., 
&nl7 grid=’gold.xyz’ q_in=’gold.0050.q’ &end 
Any file names not reset retain their default names. 

Running SWIFT 

First set an environment variable to the number of processors you want to use: 
setenv OMP_NUM_THREADS n 
where n is the number of processors with shared memory. For a quad-core processor use n = 4. 
  
SWIFT is run as a standard Linux process: 
swift < input_file > output_file & 

Linux Shell Scripts 

Linux c-shell scripts are included for running each case. The scripts do the following: 
 

Set prefixes pin and pout for input and output file names. Input files will be named pin.q and pin.kw. Output 
files will be named pout.out, pout.q, and pout.kw. You may want to include the iteration count in the prefixes. If 
you use the same prefix for both, the output files will overwrite the input files at completion. 

set pin=input_prefix  #set input prefix here 
set pout=output_prefix #set output prefix here 
 
Link the input and output files to the appropriate Fortran unit numbers. Link the grid and index files here. 
ln grid.xyz  fort.1 #set grid file here 
ln case.ind fort.10 #set index file here 
 
ln $qin   fort.2 #restart q input 
etc. 
 
Link the k-  turbulence model files. 
set kw=1  #set to zero if not running the k-w model  
… 
endif 
 
Cat (concatenate) the namelist data below to a file called input until the line labeled EOIN is reached. Change 

your SWIFT input here. 
cat > input  << EOIN 
 ‘Title goes here’ 
&nl2 cfl=5.6 … &end 
… 
EOIN 
 
Run SWIFT in the background and use tail to follow the output.  
swift < input > $out & 
tail -f $out 
You can kill the tail command with <control> c. 
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SWIFT Input 
Namelist input is used for most variables. Many variables have defaults assigned and can be defaulted (not 

input.) Defaults are given in angle brackets, <Default=value> or <default>.  If no default is given the value 
MUST be input. 

Title 

ititle A text string of 80 characters or less enclosed in single quotes. The text is printed to the output.  

&nam2 - Algorithm Parameters 

nstg Number of stages for the Runge-Kutta scheme, usually 4, but can be 2  5, <default = 4>. 

ndis Number of evaluations of artificial viscosity per stage. More than one evaluation usually 

improves robustness but increases CPU time, <default = 1>. 

 ndis > 1 gives 2 evaluations at stages 1 and 2 for nstg = 4. 

 ndis > 1 gives 3 evaluations at stages 1, 3, and 5 for nstg = 5. 

icdup Flag for the type of differencing scheme. 

 = 0 Central-difference schemes, requires avisc2 and avisc4, <default>. 

 = 1 AUSM+ scheme, requires ausmk, refmr and/or refms. 

 = 2 H-CUSP scheme, requires hcuspk, refmr and/or refms. 

cfl Courant number, typically 5.6 (see Multistage Runge-Kutta Scheme, pp. 4.) If ivtstp = 0, cfl is 

the maximum Courant number, usually located somewhere near the leading edge at the blade 

surface. If ivtstp = 1, the Courant number will equal cfl everywhere. <default = 5.0>. 

avisc1 First-order artificial dissipation coefficient. Not recommended, but can sometimes be used to 

stabilize a solution that blows up at startup. Set avisc1 = 1.0 for the first 50  100 iterations if 

necessary, but be sure to set avisc1 = 0.0 as soon as the solution is running stably. 

avisc2 Second-order artificial dissipation coefficient. Typically 0.0  2.0. Use 0.0 for purely subsonic 

flow or 1.0 for flows with shocks, <default = 1.0>. 

avisc4 Fourth-order artificial dissipation coefficient. Typically 0.25 - 1.5. Start at 1.0 and reduce 

avisc4 to 0.5 if possible, <default = 1.0>. 

irs Implicit residual smoothing flag. Usually = 1. (See Implicit Residual Smoothing, pp.  5.) 

 = 0 No residual smoothing. 

 = 1 Implicit smoothing after every Runge-Kutta stage, <default>. 

 = 2 Implicit smoothing after every other stage. eps must be increased for this option to work. 

Rarely used. 

eps Overall implicit smoothing coefficient based on the 1-D stability limit, (see Implicit Residual 

Smoothing, pp. 5). SWIFT will calculate the 1-D limit if eps is defaulted. 

epi, epj, epk Implicit smoothing coefficient multipliers for the i, j, and k directions, (see Implicit Residual 

Smoothing, pp. 5). Rarely used, <default = 1.0>. 
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itmax Number of iterations, typically 100  1000 per run, but 1000  3000 will be needed for a 

converged solution. 

ivdt Variable time step flag. 

 = 0 Spatially constant time step. 

 = 1 Spatially variable time step, <default, highly recommended>. 

ipc Preconditioning flag, (see Preconditioning, pp. 6). 

 = 0 No preconditioning, <default>. 

 =  Preconditioning using the Merkel, Choi, Turkel scheme. Should give a substantial speedup 

for Mach numbers < 0.3. 

 = 2 Solves the equations using the preconditioning variable set, but sets the preconditioning 

matrix to the identity matrix. Used to debug the preconditioning routines. Rarely used. 

refms, refmr Reference relative Mach numbers Mref  used for the preconditioning, H-CUSP and AUSM+ 

schemes. Refms is an absolute Mach number used for stators and refmr is a relative Mach 

number used for rotors. Should be approximately the largest Mach number expected in the 

flow, but less than 1.0. Reference Mach numbers for the preconditioning, H-CUSP and 

AUSM+ schemes are adjusted using pck, hcuspk, and ausmk.  

pck Constant used to scale Mref  for preconditioning (Turkel’s parameter k.) The denominator in 

the preconditioning matrix is limited to be > pck Mref( )
2
. Typically 0.1  0.3. Smaller values 

may improve convergence, but larger values may be necessary for stability. <default = 0.15>. 

hcuspk Constant used to scale Mref  for the H-CUSP scheme. In the H-CUSP scheme the low-speed 

dissipation is scaled by max M ,hcuspk Mref( )
2

( ) , so that hcuspk sets the minimum value of 

dissipation. Typical values are 0.05 – 0.10. Smaller values may cause wiggles in the solution. 

Larger values may improve convergence but will increase predicted losses. <default = 0.05> 

ausmk Constant used to scale Mref  for the AUSM+ scheme. In the AUSM+ scheme the numerical 

speed of sound is used to calculate the pressure fluxes and the pressure diffusion term. The 

numerical speed of sound is a function of a reference Mach number ausmk Mref( )
2

, so 

ausmk also controls the dissipation of the scheme, but in a less obvious way than hcuspk. 

Typical values are 0.3 – 0.8. Larger values are needed for convergence but don’t hurt accuracy. 

<default = 0.8>. 

&nam3 - Boundary Condition & Code Control 

The flow equations in SWIFT are formulated using Cartesian velocity components (u, v, w) . The velocity 

components used in the boundary conditions depend on the geometry. Cartesian velocity components (u, v, w)

are used for linear geometries (igeom = 0), and modified cylindrical velocity components (vm , v , vr ) are used for 

cylindrical geometries (igeom = 1, the default). Here vm = vz
2
+ vr

2 is the meridional velocity component. Input 

variables described below are written using cylindrical components, but should be replaced with Cartesian 
components for linear problems. 
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Inlet boundary 
P0  and T0  are held constant at the inlet boundary. Three flags, ibcinu, ibcinv, and ibcinw, determine how the 

inlet velocity components are determined. A single flag, ibcin, can be used to set some of the most commonly 
used combinations. Properties that are held constant are either generated from the initial condition data in the 
input file, or are read directly from a qin-file. 

ibcinu Inlet boundary condition flag for vm . 

 = 1 Extrapolate a Riemann invariant based on vm to the inlet. Used for most problems. 

<default> 

 = 2 Extrapolate vm  to the inlet. Recommended for low speed flows, especially with 

preconditioning. 

ibcinv Inlet boundary condition flag for v . 

 = 1 v  is held constant, <default>. 

 = 2 tan = v / vm  is held constant. 

ibcinw Inlet boundary condition flag for vr . 

 = 1 vr  is held constant, <default>. 

 = 2 tan = vr / vm  is held constant. 

 = 3 vm  is held tangent to the meridional grid lines at the inlet, <default>. 

ibcin  Obsolete inlet boundary condition flag. ibcinu is set as above, and ibcinv = 2. 

 = 0 or defaulted: ibcinu, ibcinv and ibcinw set as described above. 

 = 1 Sets ibcinw = 3. 

 = 2 Supersonic meridional inflow velocity - all quantities are held constant. (Rarely used 

except for the NASA supersonic throughflow fan project). 

 = 3 Sets ibcinw = 2. 

 = 4 Sets ibcinw = 1. 

Exit Boundary 
Four primitive variables are extrapolated to the exit. The input parameter prat gives the exit pressure. The 

parameter ipex determines where prat is specified and determines how the spanwise pressure distribution is 
calculated. 

ibcex Exit boundary condition flag.  

 = 1 Prat is specified as a constant. Only applicable to linear geometries, or annular geometries 

with radial outflow. 

 = 2 Supersonic meridional outflow. P is extrapolated to the boundary. Prat is not used. 

(Rarely used except for the NASA supersonic throughflow fan project). 

 = 3 Prat is specified at the exit. The spanwise variation of p  is found by solving the radial 

equilibrium equation,  
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dp

dr
=

v 2

r
 

 and p  is constant blade-to-blade, <default>. 

 = 4 Prat is specified at the exit. The spanwise variation of p  is found by solving the radial 

equilibrium equation. p is found as a perturbation about p  using a characteristic boundary 

condition developed by Giles. 

ipex Flag that tells where prat is specified. This can affect the stability range of compressors.  

 If igeom = 0, prat is held constant over the exit. 

 =  0 Prat is specified at the hub, <default>. 

 = -1 Prat is specified at the tip. Use for tip-critical compressors. 

 =  1 Exit pex-file is read from an exit profile on fort.14, (see below). 

Inlet and Exit Profile Controls 
Inlet profiles of P0 , v , vr , and T0

, and exit profiles of pstat can be specified as boundary conditions for 

SWIFT. For convenience, a common file format is used for both inlet and exit (see Inlet and Exit Profiles, pp. 
29). The profiles are input as text files containing six variables at several spanwise locations. Only the variables 
needed at a particular boundary are used, and the other variables are ignored. The profiles are interpolated 
linearly along the span of the actual grid. 

Inlet and exit profile files for the current solution can be written by setting variable ispan = 1. The output file 
is written to fort.15, and can be edited to extract inlet or exit profiles that can used for subsequent calculations. In 
this way a multistage machine can be modeled one row at a time by using the exit profile from one blade row as 
the inlet profile to the next. 

ispan Flag for writing spanwise profiles to fort.15. 

 = 0 No output generated, <default>. 

 = 1 Spanwise profile output written to fort.15. 

iqin Flag for reading inlet profile. 

 = 0 Inlet conditions are calculated by subroutine qincalc based on the initial condition data, 

boundary layer thicknesses, etc. in the input file. Current input values are used, so the inlet 

profiles can be changed at restart if desired, <default>. 

 = 1 Inlet qin-file read from fort.13. Used to read an exit profile from a solution of an upstream 

blade row. 

ipex Flag for reading exit pressure profile, also used to set location of prat. (see Exit Boundary 

above.) 

 = 1 Exit pex-file is read from fort.14. 

Code Control 

isymh Bottom-plane symmetry flag for ducts or linear cascades. 

 = 1 Symmetry condition on k = 1. 

 else Solid wall boundary condition on k = 1, <default>. 
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isymt Top-plane symmetry flag for ducts or linear cascades. 

 = 1 Symmetry condition on k = km. 

 else Solid wall boundary condition on k = km, <default>. 

ires Iteration increment for writing residuals in the output file. Typically 10. If the solution is 

blowing up, Restart with ires = 1 to print the size and location of the maximum residual at each 

iteration. 

iresti Flag for reading input restart file. Restart files are in PLOT3D format. 

 = 1 Read restart file from fort.2. 

 else No action taken, <default>. 

iresto Flag for writing output restart file. 

 = 1 Write restart file to fort.3, <default>. 

 else No action taken. 

newkw Flag for running the k-  turbulence model from scratch using a constant flow solution. Useful 

for debugging the k-  model. 

 = 0 Run the k-  model and flow solver, <default>. 

 = 1 Run the k-  model from initial guess for itmax cycles. Write the k-  file to fort.8 and stop. 

kwvars Number of variables to store in the k-  file, (see Turbulence Model k-  File, pp. 28). 

 = 3 Stores 3 variables [μtur , k, ] . Saves storage but not PLOT3D compatible. 

 = 5 Stores 5 variables [μtur , k, , Retur , μlam, ] . Increases storage, but makes the k-  file 

PLOT3D compatible, <default = 5>. 

iopen Flag for opening input and output files explicitly by name. 

 = 0 Files are read or written to Fortran units without explicitly opening them, <default>. 

 = 1 Files are opened by name: 

 grid.xyz  = main grid file (binary) 

 index.dat = SWIFT index file (text) 

 etc., see File Names, pp. 13. 

&nam4 - Flow Parameters 

igeom Flag for linear cascade or annular blade row. 

 = 0 Linear cascade. 

 = 1 Annular blade row <default>. 

ga Ratio of specific heats ,  < default  = 1.4 for air>. 

om Normalized blade row rotational speed, om = / c0r , where  is the wheel speed in radians 

per second, and c0r  has dimensions of [grid units/sec], giving om dimensions of [1/grid units]. 
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Looking in the positive x-direction of the grid, clockwise rotation is negative and 

counterclockwise rotation is positive. om is negative for most Glenn geometries. For any new 

problem it is best to set om, run 1 iteration with oar =1, then plot relative velocity vectors on a 

blade-to-blade plane. If the vectors go through the blade, change the sign on om. <default = 0>. 

prat Ratio of the exit static pressure to the reference total pressure, prat = pexit / P0r . 

expt Exponent used to specify the inlet whirl distribution. 

M = M mid (r / rmid )
exp t  

  where M mid  is the mid-span value of M  determined from the initial condition input. 

 =  0 Gives uniform M  except within the endwall boundary layer, <default>. 

 = -1 Gives free vortex inflow. 

 =  1 Gives forced vortex inflow. 

&nam5 - Viscous Parameters 

ilt Inviscid, Laminar, or Turbulent analysis. 

 = 0 Inviscid. Most other viscous parameters are not used if ilt = 0. 

 = 1 Laminar. 

 = 2 Turbulent using the Baldwin-Lomax turbulence model, <default>. 

 = 3 Turbulent using the Cebeci-Smith turbulence model. This model works well for turbine 

heat transfer but may over predict losses for transonic compressors. 

 = 4 Fully turbulent using the Wilcox baseline k-  turbulence model. 

 = 5 Turbulent with transition using the Wilcox low Reynolds number k-  turbulence model. 

Note that low Reynolds number model refers to the transition model, and not to near-wall 
modifications needed by k-  models. 

isst Flag for the stress limiter in Wilcox’s 2006 k-  model. Limits the turbulent viscosity when 

production of turbulent kinetic energy exceeds destruction. Works well for shock separated 

flows.  

 = 0 No stress limiter, <default>. 

 else Stress limiter is used. 

itur The turbulence model is updated every itur iterations. Recommended values are itur = 5 for the 
Baldwin- Lomax or Cebeci-Smith models, and itur = 2 for the k-  model. If the k-  model 

blows up quickly it may help to use itur = 1 for the first 100  200 iterations, <default = 5>. 

renr Reynolds number per unit length based on reference conditions, renr = 0rc0r / μ0r . Must have 

units of [1/grid units]. Generally much larger that a conventional free-stream Reynolds 

number. For example, for standard conditions: 

renr = .0765
lbm

ft3 1116.7
ft

sec
/1.197 10 5 lbm

ft sec

= 7.143 106 / ft
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prnr Prandtl number, <default = 0.7 for air>. 

tw Normalized wall temperature, tw = Twall /T0r . 

 = 0 Adiabatic wall boundary conditions are used. 

 = 1 Twall = T0r  <default>. 

 else Twall = tw T0r . 

vispwr  Exponent for laminar viscosity power law, <default vispwr = 0.667 for air>. Use vispwr = 0.0 

for water. 

μ / μ0r = (T /T0r )
vispwr  

prtr Turbulent Prandtl number, <default = 0.9>. 

cmutm Value of μturb / μ0r  where transition is assumed to occur for the Baldwin-Lomax and Cebeci-

Smith models. Baldwin and Lomax recommended 14. Can be increased to move transition 

downstream or vice-versa. If cmutm = 0 the flow is fully turbulent, <default = 14>. 

jedge j-index where the artificial viscosity begins to ramp off near the blade. Also the last j-index 

searched for the blade turbulent length scale. For the Baldwin-Lomax turbulence model (ilt = 

2) jedge should be a grid line slightly bigger than the largest expected blade boundary layer. 

For the Cebeci-Smith turbulence model (ilt = 3), jedge should be a grid line slightly bigger 

than half the largest expected blade boundary layer, <default = 10>. 

kedgh, kedgt k-indices where the artificial viscosity begins to ramp off near the hub and tip. Also the last k-

indices searched for the hub and tip turbulent length scales. See comments for jedge. <default 

= 10>. 

iltin Flag controlling inlet velocity and P0 profiles. 

 = 0 Inviscid. 

 = 1 Laminar.  

 = 2 Turbulent using Cole's wall-wake profile, <default>. 

dblh, dblt Inlet hub and tip boundary layer thicknesses in grid units. 

xrle, xrte Axial locations where the hub starts and stops rotating. Rotational boundary conditions are 

applied on the hub for xrle < x < xrte . Stationary conditions are applied elsewhere. Note that 

xrle and xrte may not be sufficient to locate the rotating part of the hub in a radial flow 

machine. Defaults are set to make the entire hub rotate. 

irle, irte i-indices where the hub starts and stops rotating. In radial flow machines xrle and xrte may not 

be sufficient to locate the rotating part of the hub, so irle and irte can be used instead. This 

option only works correctly for a single block H-grid, and even then the grid lines may not be 

straight. Defaults are set to make the entire hub rotate. 

tintens Free-stream turbulence intensity written as a decimal. Used to set the inlet value of k for the k-
 model. Typically 0.1 or less. Very small values can cause an abrupt decay of  very close to 

the inlet. <default = 0.01, i.e., one percent>. 

tmuinf Free-stream turbulent viscosity, Used to set the inlet value of  for the k-  model 
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tlength Old input variable used to determine the inlet value of . Retained for backwards 

compatibility.  

 Turbulent length scale in grid units. Typically 0.03  boundary layer height, or 0.001  pitch. 

 Tmuinf is used tlength is omitted, <default>. 

hrough Surface roughness height in grid units. Usually hrough = 0 is used to model a hydraulically 

smooth surface. To model a rough surface like a turbine blade set hrough = equivalent sand 

grain roughness height, or 2 – 4 times the RMS roughness height. If the first grid point off the 

wall is at y+ = 2 , then hrough must be > 2.5 ywall to have much effect. 

 =  0. Hydraulically smooth surface. 

 > 0. Roughness effects are modeled using the Cebeci-Chang model or Wilcox’s roughness 

boundary condition for .  

&nam6 - Output Control 

oar Flag for frame of reference of output q-file. SWIFT automatically detects the frame of 

reference of a restart q- file and converts it to the absolute frame for internal use if necessary. 

 = 0. All blade rows are in the absolute frame of reference. 

 = 1. All blade rows are in the relative frame of reference. <default> 

mioe Flag for output format of mass flow in residual history. For transonic fans the inflow may 

respond slowly to a change in back pressure, so the inlet mass flow can be monitored for 

convergence. For turbines the inflow may choke quickly so the outflow can be monitored. In 

general the mass flow error is a good measure of convergence and accuracy and should 

converge to a fraction of a percent (e. g., < 0.003). 

 = 1 Inlet mass flow history is written. 

 = 2 Exit mass flow history is written. 

 = 3 Mass flow error, 1 mout / min , is written, <default>. 

 = 4 Eliminates the maximum residual (which always looks like the RMS residual anyway) and 
prints both min  and mout  instead. Calculate the mass flow error yourself with EXCEL if 

desired. 

iqav Flag controlling type of -averaging used in the output. 

 = 0 Entropy average. Mass average of [s,V , h] .  Gives a good estimate of local losses, 

<default>. 

 = 1 Momentum average. Mass average of [ , V , e] , fairly conservative, similar to the mixed-

out average. 

 = 2 Mixed-out average. Formal average of inviscid fluxes gives properties far downstream. 

Usually the most conservative average. 

 = 3 Total pressure average. Converts P0 to an equivalent T0, mass averages, then converts back. 

Often done with experimental data. Usually similar to the entropy average. 

nko Number of k-indices for blade surface output, max = 10, <default = 0>. 
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ko Array of nko k-indices separated by commas where blade surface output is desired, <default = 

0>. 

iog Grid block number where spanwise output is desired. Spanwise output is normally printed at 

the inlet and exit of each blade grid. Sometimes it is useful to have output from other cross-

channel planes, say near the trailing edge. This output can be generated for a single grid block 

by specifying the block number iog, and the desired i-indices io, <default = 1>. 

io Array of up to 10 i-indices where spanwise output is desired. For H-grids output is printed at 

each i index. For C-grids the i-index and its periodic neighbor are merged, <default = 0>. 

ismout Flag for normalized distance sbar printed in blade surface output. 

 = 1 sbar = arc length around blade. 

 = 2 sbar = meridional distance along the blade. 

 else sbar = axial distance x, <default>. 

ileout Flag for location of leading edge (sbar = 0) printed in blade surface output. 

 if ismout = 0: LE is at xmin 

 if ntype = 1: LE is at ile (H-grid) 

 if ileout = 0: LE is at the middle i-index 

 else:  LE is at ileout 
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Initial Condition Input 

2+nrow lines of data must be input immediately after the namelist input. This data is used for the initial guess 
and the inlet boundary conditions. Nrow is the number of blade rows. The first line is ignored and is usually used 
for column labels. The second line gives the inlet conditions at mid span, and is used to set the inlet boundary 
conditions. The remaining nrow lines give row number and nominal flow exit conditions at mid span. 
Unformatted reads are used; so all variables must be input. 

A sample initial condition input for a seven-block grid is shown in Figure 5. A portion of the input is repeated 
below. 
 

  row        P0        Mx        Mt        Mr        T0 
    0    1.0000     .1330    -.0000        0.    1.0000 
    1     .9938     .1692    -.3986        0.    1.0000 
  etc. 

 
The variables are as follows: 

row Integer blade row number. Row number 0 is the inlet. Subsequent row numbers represent the 

exits of each blade row. 

P0 P0 / P0r at mid span. 

Mx Mid span Mach number in the x-direction. 

Mt Mid span Mach number in the q- or y-direction. 

Mr Mid span Mach number in the r- or z-direction. 

T0 T0 /T0r at mid span. 
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Index File 
The index file is a text file that gives the grid sizes, connectivity, and some boundary condition information 

for each grid block. 
The first line is ignored and can be used for column labels. Subsequent lines give grid type, dimensions, key 

indices, connecting grid numbers, blade row number, and relative rotational rate for each grid. Negative values 
are sometimes used to toggle boundary condition options. One line is required for each grid. Unformatted reads 
are used; so all variables must be input. 

For an isolated blade row, TCGRID will produce a complete index file written to fort.10. It may be necessary 
to modify nhub or ntip if the simple periodicity clearance model is to be used, or to modify the rotation 
multipliers om, omh, or omt. 

For multistage calculations the grids and index files for each blade row are generated separately, and merged 
using the utility code called multix.f. The merged index file will have the correct block sizes and key indices, but 
must be edited manually to set block connectivity, and options for mixing planes, clearances, and endwall 
rotation.  Additional details about generating multistage grids are given in the TCGRID user’s manual [16]. 

 
A sample index file for a seven-block grid is shown in Figure 5. A portion of the file is repeated below. 

 
 grid type   im   jm   km   i1   i2   i3  nin  nex nhub ntip  nlr  row   om  omh  omt 
    1    1   17   16   57    0    0    0  999    2    0    0    0    1   0.   1.   0. 
    2    2  147   37   57   24   67    0    1   -3    0    0    0    1   0.   1.   0. 
    3    2  161   43   57   27   74    0   -2   -5    0    4    0    2   1.   1.   0. 
 etc. 

 

Index File Variables 

grid Grid (block) number, from 1 to number of grids. 

type Flag giving type of grid. 

 = 1 H grid for upstream 

 = 2 C grid for blades 

 = 3 O grid for hub or tip clearances 

im Number of grid points in i-direction. 

jm Number of grid points in j-direction. 

km Number of grid points in k-direction. 

i1 (C-grid) Lower i-index of the trailing edge. Upper index is assumed to be periodic. 

i1 (H-grid) Leading-edge index of an H-grid, or flag for the type of H-grid geometry. 

 = 0 Upstream H-grid ahead of a C-grid 

 = 1 H-grid in a rectangular duct 

 > 1 H-grid around a blade. i1 is the i-index of the leading edge. 

i2 (C-grid) Lower i-index of the inlet. Upper index is assumed to be periodic. 

i2 (H-grid) i-index of the trailing edge for an H-grid around a blade 

i3 Unused, set to 0. 

nin Inlet boundary condition flag. 
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 = 999 C- or H-grid with conventional inlet boundary condition. 

 > 0 C-grid inlet patched to upstream H-grid number nin. 

 < 0 C-grid inlet mixed-out from upstream C-grid number nin. 

nex Exit boundary condition flag. 

 = 999 C-grid with conventional exit boundary condition. 

 > 0 H-grid exit patched to downstream C-grid number nex. 

 < 0 C-grid exit mixed out to downstream C-grid number nex. 

nhub Flag for hub clearance. 

 > 0 Connecting grid block number for gridded hub clearance. 

 = 0 No hub clearance. 

 < 0 Simple periodicity hub clearance model between k=1 and k=abs(nhub). 

ntip Flag for tip clearance. 

 > 0 Connecting grid block number for gridded tip clearance. 

 = 0 No tip clearance. 

 < 0 Simple periodicity tip clearance model between k=abs(ntip) and k=km. 

nlr Unused, set to 0. 

row Integer blade row number between 1 and the number of blade rows. Corresponds to row 

number in initial condition input. 

om(n) Rotation multiplier. The rotational speed for row n is om om(n) . Usually 0.0 for stators, 1.0 

for rotors, or -1.0 for counter-rotating rotors. (See &nam5 – Viscous Parameters, pp. 20, for 

definition of normalized blade row rotational speed om). 

omh(n) Hub rotation multiplier. Rotational speed for k = 1 for row n is om omh(n) . Usually 1.0 for 

rotating hubs. Overridden by variables xrle and xrte, or irle and irte, the axial locations or grid 

indices where the hub starts and stops rotating (see &nam5 – Viscous Parameters, pp. 20). 

omt(n) Tip rotation multiplier. Rotational speed for k = km for row n is om omt(n) . Usually 0.0 for 

stationary shrouds or 1.0 for rotating shrouds. 
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SWIFT Output 
Printed output from SWIFT is written to fort.6 (standard output,) and contains the following information:  

• The input variables are echoed back for reference, and any comments or warnings about the input are given. 

• Spanwise profiles of -averaged flow variables are given at the inlet or exit. These variables come from the 

initial guess if iresti = 0, or from the restart file if iresti = 1. The initial profiles are often useful for identifying 

grid indices near the tip clearance, or near the edge of endwall boundary layers. 

• A convergence history that gives maximum and RMS residuals of density, and exit flow properties versus 

iteration. 

• Total CPU time for all processors. 

• Spanwise profiles of -averaged flow variables are given at the inlet and exit for the new solution. Four 

different averaging schemes are available for computing these profiles. Most variables should be obvious, 

except: 

% mdot is the percent of mass flow between the hub and index k. 
The last value in % mdot is the total mass flow through the annulus at that station, m / ( 0rcc0r ) . 

• Spanwise profiles of blade row performance parameters are given after each blade row. Most variables should 

be obvious, except: 

alpha = tan 1(v / vm )

phi = tan 1(vr / vm )
 

• Blade surface distributions are given of the following quantities: 

x  x-coordinate, grid units 

r r-coordinate, grid units 

sbar  normalized arc length from the leading edge.  

ps p / P0ref  

ts T /T0ref  

M_isen Isentropic Mach number 

M_rel Relative Mach number, usually 0.0 except for inviscid solutions. 

y+ Grid spacing at the wall in turbulent wall units. Should < 2 – 3 at most grid points for 

accurate prediction of losses and heat transfer. 

1000*Cf Skin friction coefficient  

Cf = μ
V

n wall

1

2 inVin
2  

1000*St Stanton number, usually 0.0 if tw = 0. 

St = k
T

n wall
inVinCp Tin Twall( )  

tmu_max Maximum values of μturb / μ0r along each i grid line. Can be used to identify transition. For 

the Baldwin-Lomax and Cebeci-Smith models transition occurs where tmu_max jumps 

abruptly from 0 to > cmutm. For the k-  model transition occurs more gradually but should 

be obvious as a rapid growth of tmu_max. 
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File Descriptions 

Code for reading PLOT3D files given below is for single-block grids only. Consult the PLOT3D 
documentation for details on how to read multi-block files.  

Grid XYZ-File 

Grids are stored using standard PLOT3D xyz-file format. Grids can be read with the following Fortran code: 
 

c     read grid coordinates 
      read(1)im,jm,km 
      read(1)(((x(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &       (((y(i,j,k),i=1,im),j=1,jm),k=1,km), 
     &       (((z(i,j,k),i=1,im),j=1,jm),k=1,km) 

Solution Q-File 

Solution files are stored in standard PLOT3D q-file format. Solution files can be read with the following 
Fortran code: 
 

c     read q-file 
      read(2)im,jm,km 
      read(2)eminf,aldeg,renr,time 
      read(2)((((qq(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,5) 
  
c     additional geometry data and residual history 
      read(2)itl,iil,phdeg,ga,om,nres,igeom,dum,dum,dum 
      read(2)((resd(n,l),n=1,nres),l=1,5) 

 
The q-variables are: 

q =
0r

,
u

0rc0r
,

v

0rc0r
,

w

0rc0r
,

e

0rc
2
0r

e = CvT +
1

2
(u2 + v2 + w2 )

 

If oar = 1 the relative velocity components are stored, v = v z , w = w + y . 

Turbulence Model k-  File 

Restart files for the k-  turbulence model are stored in standard PLOT3D q-file format. Solution files can be 
read with the following Fortran code: 
 

c     read tmu, k, w 
      read(7)im,jm,km 
      read(7)dum 
      read(7)((((tkw(l,i,j,k),i=1,im),j=1,jm),k=1,km),l=1,kwvars) 

 
The tkw-variables are: 

tkw =
μtur

μ0r
,
k

c0r
2 , c0r

,
μlam

μ0r
, Retur  
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Note that the laminar viscosity μlam  and the turbulence Reynolds number Retur  are not used by SWIFT. 

They are written to pad the file for PLOT3D compatibility if kwvars = 5. This results in larger file sizes than 
necessary. Smaller files may be generated by setting kwvars = 3, but the files cannot be read by PLOT3D. 

Inlet and Exit Profiles 

Inlet profiles of P0 , vx , v , vr , and T0 , and exit profiles of pstat can be specified as boundary conditions for 

SWIFT. For convenience, a common file format is used for both inlet and exit. The profiles are input as text files 
containing six variables at several spanwise locations. Only the variables needed at a particular boundary are 
used, and the other variables are ignored. For example, vx is ignored at the inlet and can be set to zero. The 

profiles are interpolated linearly along the span of the actual grid. 
A sample profile file can be generated by setting variable ispan = 1. The output written to fort.15 may be 

edited manually to extract the desired profile. The format is as follows: 
 

&ospan irow = 0 kin = 95 flow = 119.25082 &end 
k    s/span    P0/P0i     vx/c0    vth/c0     vr/c0    T0/T0i    ps/P0i 
1   0.00000   1.12907   0.00000  -0.65789   0.00000   1.06326   0.83876 
2   0.00019   0.90181  -0.07050  -0.31211  -0.01668   1.00000   0.83864 
etc. 

 
The first line is namelist input. Only kin is required. 

kin  Number of spanwise points. 

irow Dummy variable not used by SWIFT, but useful for identifying the desired profile from an 

output file. Irow gives the location of the profile, where irow = 0 is the inlet, irow = 1 is the 

exit of the first blade row, irow = 2 is the exit of the second blade row, etc. 

flow Dummy variable not used by SWIFT. Flow is the non-dimensional mass flow and is included 

for use by the CSTALL code now under development. 

 
The second line has titles for convenience but is not read. The remaining kin lines have the following 

variables: 

k Spanwise index, not used. 

s/span Normalized spanwise distance, between 0.0 at the hub to 1.0 at the tip. 

P0/P0i Normalized total pressure, used for inlet profiles only. 

vx/c0 Normalized axial velocity, not used. 

vth/c0 Normalized tangential velocity, used for inlet profiles only. 

vr/c0 Normalized radial velocity, used for inlet profiles only. 

ps/p0i Normalized static pressure, used for exit profiles only. 
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Figure 1. 3-D coordinate system and grid index convention. 

 

 

Figure 2. Index convention for a C-grid around a fan blade with an H-grid upstream. 
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Figure 3 Index convention for an H-grid around a fan blade. 

 

 

Figure 4. Three-block grid for a turbine stage showing overlap regions and dummy grid lines. 
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Top: Seven-block grid for the SSME two-stage fuel turbine with rotor tip clearances. 
Bottom: Block diagram of the SSME seven-block grid. 

 
 

 grid type   im   jm   km   i1   i2   i3  nin  nex nhub ntip  nlr  row   om  omh  omt 
    1    1   17   16   57    0    0    0  999    2    0    0    0    1   0.   1.   0. 
    2    2  147   37   57   24   67    0    1   -3    0    0    0    1   0.   1.   0. 
    3    2  161   43   57   27   74    0   -2   -5    0    4    0    2   1.   1.   0. 
    4    3  109   13   13    7   49    0    0    0    0    3    0    2   1.   1.   0. 
    5    2  147   37   57   24   65    0   -3   -6    0    0    0    3   0.   1.   0. 
    6    2  161   43   57   31   74    0   -5  999    0    7    0    4   1.   1.   0. 
    7    3  101   13   13    7   43    0    0    0    0    6    0    4   1.   1.   0. 

 

Index file on fort.10 
 
 

  row        P0        Mx        Mt        Mr        T0 
    0    1.0000     .1330    -.0000        0.    1.0000 
    1     .9938     .1692    -.3986        0.    1.0000 
    2     .8210     .1984     .0802        0.     .9518 
    3     .8112     .1858    -.4175        0.     .9518 
    4     .7964     .3693     .0852        0.     .9059 

 

Initial condition data in SWIFT input. 
 

Figure 5. Grid, block diagram, index file, and initial condition data for the SSME two-stage fuel turbine. 
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Test Cases 

Goldman’s Annular Turbine Vane Cascade 

 

Figure 6. Mach contours for the Goldman annular turbine vane cascade. 

This test case is an annular turbine vane cascade described by Goldman and McLallin in [17], with 
computational results shown in [1, 4]. The blade is a simple extruded section with constant radius endwalls. 
There are 36 vanes with a design exit Mach number of 0.665. Figure 6 shows Mach number contours through the 
cascade at mid span. 

The c-shell script gold.csh explains how to run the case with the central-difference, AUSM+, and H-CUSP 
schemes. The Excel spreadsheet Goldman_cascade_data.xlsx compares blade surface pressures and exit total 
pressure loss coefficients to experimental data. Experimental wake profiles are also included. 

Space Shuttle Main Engine Two-Stage Fuel Turbine  

 

Figure 7. Pressure contours on the space shuttle main engine fuel turbine. 

The space shuttle main engine (SSME) used turbopumps to pump fuel and oxidizer from the main tank to the 
combustion chamber. The high-pressure fuel turbopump used a two-stage axial flow turbine to drive the pump. 
Hudson, et al tested the turbine experimentally in a cold flow test at NASA Marshall Space Flight Center, and 
measured surface pressures on the stators and endwalls [19]. Dunn, et al. tested the turbine in a short duration 
shock tube at Calspan, and measured blade heat transfer and unsteady pressures [18]. The SSME turbine was 
used as a test case for the mixing plane capability in SWIFT in [15]. 

The test case uses a seven-block grid that is generated by running the script named makegrid.csh. The index 
file out.ind must be modified manually to set the connectivity at the mixing planes, but the final index file, 
ssme.ind, is included. The script ssme.csh runs SWIFT 2500 iterations with the AUSM+ scheme, the k-  
turbulence model, and preconditioning. Preconditioning significantly improves convergence for this case even 
though the flow speed is relatively high. tw is set to 0.7 for heat transfer calculations. The Excel spreadsheet, 
ssme_data.xlsx, compares measured and computed pressures on the stators, and Stanton numbers on the stators 
and first rotor. 
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NASA Large, Low-Speed Centrifugal Compressor  

 

Figure 8. Pressure contours on the large, low-speed centrifugal compressor. 

The large, low-speed centrifugal compressor (LSCC) is a research rig used to make detailed measurements in 
a centrifugal compressor [20]. It is 5 feet in diameter and has 20 blades with no splitters. It was used in [14] as a 
test case to demonstrate preconditioning in SWIFT. Computed pressure contours on the impeller are shown in 
Figure 8. 

The test case uses a single-block H-grid. Running TCGRID with the input file lscc.int generates the grid. The 
index file lscc.ind sets up the periodic tip clearance model over the rotor. The script lscc.csh runs SWIFT with 
the AUSM+ scheme, the k-  turbulence model, and preconditioning. The Excel spreadsheet, lscc-data.xlsx, 
compares measured and computed blade surface pressures and exit total pressure profiles. 

Rotor 37  

 

Figure 9. Relative Mach number contours for rotor 37 at mid span. 

Rotor 37 is a low aspect ratio inlet rotor for a core compressor. It has 36 multiple circular-arc (MCA) blades 
and a design pressure ratio of 2.106 at a mass flow of 44.5 lb.sec. It was originally tested as a stage by Reid and 
Moore [22, 23], and later the isolated rotor was tested by Suder, et al. [24]. Suder’s measurements were used for 
a blind CFD test case by IGTI and AGARD. SWIFT calculations for rotor 37 were shown in [24], and computed 
Mach contours at mid span are shown in Figure 9. 

The 3-block grid for the rotor 37 test case is generated by running TCGRID with the input file r37.int. The 
index file generated by TCGRID should identical to the included index file r37.ind. SWIFT input r37.csh is set 
up to run 3000 iterations with the AUSM+ scheme, the k-  turbulence model. The exit static pressure ratio prat is 
set to give a solution near peak efficiency. The Excel spreadsheet rotor_37.xlxs includes a speed line computed 
with other pressure ratios. It also compares measured and computed profiles of pressure ratio, temperature ratio, 
adiabatic efficiency, and flow angle behind the rotor. 
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Stage 35  

 

Figure 10. Relative Mach number contours for stage 35 at mid span. 

Stage 35 is an inlet stage for a core compressor tested by Reid and Moore [22, 23, 25]. SWIFT calculations 
for stage 35 were also shown in [24]. Computed Mach contours at mid span are shown in Figure 10. 

Rotors 35 and 37 have the same blade count, design speed, hub and casing radii, and tip clearance. Rotor 35 
has the same blade profile as rotor 37 in the front, transonic half of the blade, so that the shock structure and 
choking flow of the two rotors are the same. However, rotor 37 has more camber than rotor 35 aft of the shock, 
giving a design pressure ratio of 2.106, while stage 35 has design pressure ratios of 1.865 for the rotor and 1.82 
for the stage. Stator 35 has 46 MCA blades cantilevered from the casing with a clearance of ~0.5 percent span. 

The 5-block grid for the stage 35 test case is generated by running the script makegrid.csh. The index file 
out.ind must be modified manually to set the connectivity and other parameters, but the final index file, 
stage35.index, is included. The script stage.csh runs SWIFT 3000 iterations with the AUSM+ scheme and the k-  
turbulence model. The exit static pressure ratio prat is set to give a solution near peak efficiency. The Excel 
spreadsheet stage_35.xlxs includes a speed line computed with other pressure ratios, and compares spanwise 
profiles of several quantities behind the rotor and stator. 

Rotor 67  

 

Figure 11. Surface pressure contours on rotor 67. 

Rotor 67 is the first stage rotor of a two-stage fan, with a design pressure ratio of 1.63 at a mass flow of 73.3 
lb/sec. The rotor has 22 blades. Rotor 67 was tested by Strazisar, and the results were presented as a CFD test 
case in Fottner [25]. CFD solutions for rotor 67 were computed with the RVC3D code and were presented in [2]. 

SWIFT solutions for rotor 67 are computed on a 3-block grid that is generated by running TCGRID with the 
r67.int input file. The index file generated by TCGRID should be identical to the included index file r67.ind. 
SWIFT input in the script r67.csh is set up to run 2000 iterations with the central-difference scheme and the k-  
turbulence model. The Excel spreadsheet rotor_67.xlxs compares measured and computed speed lines for total 
pressure, and profiles of pressure ratio, temperature ratio, adiabatic efficiency, and flow angle behind the rotor. 
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